Abstract

In this study, a simple recycling strategy for End-of-Life Tires (ELT) was described. The direct incorporation of a large-sized Ground Tire Rubber (GTR) as a major dispersed phase into the elastomer matrix was assisted by the promoter-induced mixing, which canceled the cost-consuming reclaiming step. A macro-dispersion of GTR in the mix was assessed via a surface roughness extent. This method allowed us to predict the behavior of the rubber compound. A nonuniform rough surface while the master step was converted to a smooth roll-processed web after re-milling. The processing steps were correlated with the fragmentation of GTR, partial interfacial adhesion, restoration of tack, and unsaturation. The sequential mixing generated a reasonable level of viscosity, building tack, and green strength. The structural integrity of the re-vulcanizates was provided with a higher curing temperature and was confirmed by the improved abrasion and tear resistance, retention of heat build-up, storage moduli values, and lower standard deviation compared to the unmodified GTR and neat NR/BR blends. The developed compounding and co-curing steps exhibit a practical way of GTR recycling using the standard mixer with lower operational and compound expenses, and the absence of toxic gas release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call