Abstract

Dual-functioning probes capable of detecting and removing hazardous substances have recently received increased attention compared to exclusive sensory probes. Herein, a new composite is synthesized by blending polydopamine imprinted polymers with fluorescent carbon dots (PIP-FCDs) for the selective recognition and adsorption of Ibuprofen (IBF). IBF is a nonsteroidal anti-inflammatory drug and is excessively released in the pharmaceutical wastes. The PIP-FCDs consist of confined pockets for encasing IBF and quenches fluorescence signal when contact with the molecule. PIP-FCDs show high sensitivity (limit of detection = 1.58 × 10−5 μM) and selectivity towards IBF in the presence of other pharmaceutical drugs i.e., aspirin, ketoprofen, norfloxacin, and levofloxacin. The adsorption studies show an adsorption capacity of 209.8 mg g−1 with an extraction efficiency of around 99.9 %. Furthermore, PIP-FCDs are utilized to determine IBF levels in various aqueous pharmaceutical samples. This development provides a simple and dual-functioning probe for the detection and adsorption of IBF from various matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call