Abstract

To determine viability of drowsiness detection, researchers study the feasibility of photoplethysmogram (PPG) data collection from the geography of the aviation headset, correlating to electrocardiogram (ECG) reference. Fatigue has been a probable cause, contributing factor, or a finding in 20% of transportation incidents and accidents studied between January 2001 and December 2012. This operational hazard is particularly troublesome within aviation and airline operations. PPG and ECG data were collected synchronously from Federal Aviation Administration (FAA) commercially rated pilots during flight simulation in the window of circadian low (WOCL). Valid PPG and ECG data from 14 participants were analyzed, which yielded approximately 2 hr of data per participant for fatigue-related analysis. The results of the study demonstrate clear trends toward decreased heart rate for both ECG and PPG and suggest progression of drowsiness between four separate periods (T1, T2, T3, and T4) selected during the study; however, the mean heart rate change from T1 to T4 was statistically significant. The results suggest that ECG and PPG data can be an important tool to observe conditions where drowsiness or fatigue may add risk to the operation. In addition, the data show high correlation between ECG and PPG data, further suggesting that a simpler PPG sensor, mounted within the geography of the aviation headset, may streamline the operationalization of important physiological data. Incorporation of PPG sensors and associated signal processing methods into facilitating equipment, such as the aviation headset, may add a layer to operational safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call