Abstract

In this paper, the solitonic behaviour of a blended ferron in a ferromagnetic material is studied and the different spin configurations obtained are discussed. It is found that the electron–magnon–phonon coupling significantly affects the exchange between neighbouring spins and thus both the lattice and the spin are polarized. The dynamics of the model is well described by a set of nonlinear discrete self-trapped equations with stable resonant solutions. In terms of topology, the ferron configurations obtained mimic a skyrmion, while their induced polarization and magnetization are Bell-shape soliton-like. We observe that a significant presence of the Dzyaloshinsky–Moriya interaction topologically favours a vortex skyrmion configuration (Bloch’s skyrmion), while its absence restores a Neel’s skyrmion shape. Therefore, the blended ferron is manifested in the magnetic material by its localization and the formation of self-trapped states leading to skyrmion topology. This wonderful combination is a huge boost in skyrmion formation and thus the probable application to superconductivity are opened through skyrmion pairing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call