Abstract
Diabetes mellitus (DM), commonly known as diabetes, is a collection of metabolic illnesses characterized by persistently high blood sugar levels. The signs of elevated blood sugar include increased hunger, frequent urination, and increased thirst. If DM is not treated properly, it may lead to several complications. Diabetes is caused by either insufficient insulin production by the pancreas or an insufficient insulin response by the body's cells. Every year, 1.6 million individuals die from this disease. The objective of this research work is to use relevant features to construct a blended ensemble learning (EL)-based forecasting system and find the optimal classifier for comparing clinical outputs. The EL based on Bayesian networks and radial basis functions has been proposed in this article. The performances of five machine learning (ML) techniques, namely, logistic regression (LR), decision tree (DT) classifier, support vector machine (SVM), K-nearest neighbors (KNN), and random forest (RF), are compared with the proposed EL technique. Experiments reveal that the EL method performs better than the existing ML approaches in predicting diabetic illness, with the remarkable accuracy of 97.11%. The proposed ensemble learning could be useful in assisting specialists in accurately diagnosing diabetes and assisting patients in receiving the appropriate therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.