Abstract

One of the most frequently identified cancers globally is skin cancer (SC). The computeraided categorization of numerous skin lesions via dermoscopic images is still a complicated problem. Early recognition is crucial since it considerably increases the survival chances. In this study, we introduce an approach for skin lesion categorization where, at first, a powerful hybrid deep-feature set is constructed, and then a binary tree growth (BTG)-based optimization procedure is implemented using a support vector machine (SVM) classifier with an intention to compute the categorizing error and build symmetry between categories, for selecting the most significant features which are finally fed to a multi-class SVM for classification. The hybrid deep-feature set is constructed by utilizing two pre-trained models, i.e., Densenet-201, and Inception-v3, that are fine-tuned on skin lesion data. These two deep-feature models have distinct architectures that characterize dissimilar feature abstraction strengths. This effective deep feature framework has been tested on two publicly available challenging datasets, i.e., ISIC2018 and ISIC2019. The proposed framework outperforms many existing approaches and achieves notable {accuracy, sensitivity, precision, specificity} values of {98.50%, 96.60%, 97.84%, 99.59%} and {96.60%, 94.21%, 96.38%, 99.39%} for the ISIC2018 and ISIC2019 datasets, respectively. The proposed implementation of the BTG-based optimization algorithm performs significantly better on the proposed feature blend for skin lesion classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call