Abstract
Because the non-linear and time-varying characteristics of the continuously variable transmission (CVT) system driven by using a six-phase copper rotor induction motor (IM) are unknown, improving the control performance of the linear control design is time consuming. To overcome difficulties in the design of a linear controller for the six-phase copper rotor IM servo-driven CVT system with lumped non-linear load disturbances, a blend modified recurrent Gegenbauer orthogonal polynomial neural network (NN) control system, which has the online learning capability to return to the non-linear time-varying system, was developed. The blend modified recurrent Gegenbauer orthogonal polynomial NN control system can perform overseer control, modified recurrent Gegenbauer orthogonal polynomial NN control and recompensed control. Moreover, the adaptation law of online parameters in the modified recurrent Gegenbauer orthogonal polynomial NN is based on the Lyapunov stability theorem. The use of amended artificial bee colony optimization (ABCO) yielded two optimal learning rates for the parameters, which helped improve convergence. Finally, comparison of the experimental results of the present study with those of previous studies demonstrated the high control performance of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.