Abstract

Blebbistatin, an inhibitor of myosin-II-specific ATPase, has been used to inhibit contraction of invertebrate and mammalian muscle preparations containing non-muscle myosin. Activated hepatic stellate cells have contractile properties and play an important role in the pathophysiology of liver fibrosis and portal hypertension. Therefore, hepatic stellate cells are considered as therapeutic target cells. In the present study, we studied the effect of blebbistatin during the transition of mouse hepatic stellate cells into contractile myofibroblasts. Effects of blebbistatin on cell morphology were evaluated by phase contrast microscopy. Cell stress fibres and focal adhesions were investigated by dual immunofluorescence staining and visualized using fluorescence microscopy. Contractile force generation was examined by silicone wrinkle formation assays and collagen gel contraction assays. Intracellular Ca(2+) release in response to endothelin-1 was measured by using Fluo-4. Cell migration was measured by wound healing experiments. In culture-activated hepatic stellate cells, blebbistatin was found to change both cell morphology and function. In the presence of blebbistatin, stellate cells became smaller, acquired a dendritic morphology and had less myosin IIA-containing stress fibres and vinculin-containing focal adhesions. Moreover, blebbistatin impaired silicone wrinkle formation, reduced collagen gel contraction and blocked endothelin-1-induced intracellular Ca(2+) release. Finally, it promoted wound-induced cell migration. By inhibiting myosin II ATPase, blebbistatin has profound effects on the morphology and function of activated hepatic stellate cells. Our data suggest that myosin II could be a therapeutic target in the treatment of liver fibrosis and portal hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.