Abstract
Green microalgae colonizing stone surfaces represent a major problem for the conservation of heritage monuments, since they lead to biodegradation and aesthetic issues. Previous studies in La Glacière show cave (France) have demonstrated that UV-C may have a strong effect on microalgae, thus leading to chlorophyll bleaching, which was increased when biofilms were maintained under VIS-light condition unlike to those maintained in the dark. To understand the physiological mechanisms underlying this response and in order to optimize in situ treatment, 30kJm-2 UV-C exposure times were applied to Chlorophyta Chlorella sp. and chlorophyll degradation kinetics were then monitored. UV-C irradiation was enough to inhibit photosynthesis and to directly kill all algal cells. Results also showed that chlorophyll a was degraded faster than chlorophyll b and that 14h were necessary for complete degradation of all the present chlorophyll. In addition, our results highlighted the importance of visible light exposition after UV-C treatment which leading to chlorophyll bleaching. Irradiated algae cultivated in the dark were still green 5days after treatment while cultivated samples in the light lost their green color after 14h. An efficient UV-C treatment applicable to show caves and other heritage monuments was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.