Abstract

Oceanic thermal anomalies are increasing in both frequency and strength, causing detrimental impacts to coral reef communities. Water temperatures beyond the corals optimum threshold causeing coral bleaching and mass mortality, impacting our global coral reef ecosystems, including marginal high-latitude reefs. Coral bleaching and mortality were observed at the southernmost coral reef, Lord Howe Island Marine Park, during the summer of 2019, coinciding with anomalously high sea surface temperatures across the reef system from January-April. Here we document the extent of coral impacts within the Lord Howe Island lagoonal reef and the recovery from bleaching eight-months later. Significant differences in bleaching prevalence were observed across the lagoonal coral reef, ranging from 16 to 83% across offshore and inshore reef regions and with variable onset timing. Coral mortality of up to 40% was recorded in the reef’s most severely impacted near-shore area. The four most dominant species, Stylophora pistillata, Pocillopora damicornis, Porites spp. and Seriatopora hystrix, were the most susceptible to bleaching, with all coral colonies found either bleached or dead at the most affected inshore site during and following peak heat stress. Interestingly, during the eight-months following bleaching, there was no evidence of bleaching recovery (i.e., re-establishment of symbiosis) at the offshore lagoonal site. However, there was a significant increase in the abundance of healthy coral colonies at the inshore site, suggesting the recovery of the surviving bleached corals at this site. Importantly, we found no evidence for bleaching or mortality in the Acropora spp. and minimal bleaching and no mortality in Isopora cuneata during the study period, typically highly susceptible species. Given the isolation of high-latitude reefs such as Lord Howe Island, our results highlight the importance of understanding the impacts of bleaching, mortality and bleaching recovery on coral population structure and resilience of high-latitude coral reefs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call