Abstract

Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m−2 yr−1) to strongly net negative (mean −2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to −0.4 mm yr−1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.

Highlights

  • IntroductionWe use pre- (January 2016) and post-warming (September 2016) measured rates of both gross carbonate production and bioerosion from shallow fore-reef habitats (2 m depth) on five reefs (Mahutigala, Kandahalagala, Kafigahlaa, Kodehutigalaa and Kadumaigala) to determine their net biological carbonate budgets (G, where G =kg CaCO3 m−2 yr−1)

  • As of early September 2016 most dead Acropora colonies remain in living position (Supplementary Figure 1), but declines in substrate rugosity are already becoming evident (Jan 2016 mean 2.6 ± 0.3, range: 2.5 to 2.8; Sept 2016 mean 2.3 ± 0.1%, range: 2.2 to 2.3%; Fig. 2B), significant declines have only occurred at Kadumaigala and Kafigahlaa (p < 0.05, Supplementary Table 2)

  • The major and prolonged period of elevated sea-surface temperature (SST) that caused coral bleaching in the Maldives in 2016 resulted from the recent strong El Niño that originally begun forming in the central Pacific region in June 201419

Read more

Summary

Introduction

We use pre- (January 2016) and post-warming (September 2016) measured rates of both gross carbonate production and bioerosion from shallow fore-reef habitats (2 m depth) on five reefs (Mahutigala, Kandahalagala, Kafigahlaa, Kodehutigalaa and Kadumaigala) to determine their net biological carbonate budgets (G, where G =kg CaCO3 m−2 yr−1). We use these data to address two specific questions: 1) what impact did the 2016 warming event have on the ecological composition and carbonate budgets of the shallow fore-reef (2 m depth) habitats, and how consistent were the responses across these reefs?; and 2) what have been the resultant impacts on reef growth potential?

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call