Abstract
Backscatter communication promises significant power and complexity advantages for Internet of Things devices such as radio frequency identification (RFID) tags and wireless sensor nodes. One perceived disadvantage of backscatter communication has been the requirement for specialized hardware such as RFID readers to receive backscatter signals. In this paper, we show how backscatter signals can be designed for compatibility with the Bluetooth 4.0 low energy (BLE) chipsets already present in billions of smart phones and tablets. We present a prototype microcontroller-based “BLE-Backscatter” tag that produces bandpass frequency-shift keying modulation at 1 Mb/s, enabling compatibility with conventional BLE advertising channels. Using a +23-dBm equivalent isotropically radiated power continuous wave (CW) carrier source, we demonstrate a range of up to 13 m between the tag and an unmodified Apple iPad Mini as well as a PC with the Nordic Semiconductor nRF51822 chipset. With the tag 1 m from the receiver, we demonstrate a range of up to 30 m between the CW carrier source and the tag. In both cases, the existing Bluetooth stack was used, with no modifications whatsoever to hardware, firmware, or software. The backscatter tag consumes only 1.56 nJ/b, over $6\times $ less than the lowest power commercial Bluetooth transmitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.