Abstract

Abstract Accurate estimation of the potential “upper limit” for extreme precipitation is critical for dam safety and water resources management, as dam failures pose significant risks to life and property. Methods used to estimate the theoretical upper limit of precipitation are often outdated and in need of updating. The rarity of extreme events means that old storms with limited observational data are often used to define the upper bound of precipitation. Observations of many important old storms are limited in spatial and temporal coverage, and sometimes of dubious quality. This reduces confidence in flood hazard assessments used in dam safety evaluations and leads to unknown or uncertain societal risk. This paper describes a method for generating and applying ensembles of high-resolution, state-of-the-art numerical model simulations of historical past extreme precipitation events to meet contemporary stakeholder needs. The method was designed as part of a research-to-application-focused partnership project to update state dam safety rules in Colorado and New Mexico. The results demonstrated multiple stakeholder and user benefits that were applied directly into storm analyses utilized for extreme rainfall estimation, and diagnostics were developed and ultimately used to update Colorado state dam safety rules, officially passed in January 2020. We discuss how what started as a prototype research foray to meet a specific user need may ultimately inform wider adoption of numerical simulations for water resources risk assessment, and how the historical event downscaling method performed offers near-term, implementable improvements to current dam safety flood risk estimates that can better serve society today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.