Abstract

Spontaneous blastocyst collapse during in vitro embryo development has been suggested as a novel marker of embryo quality. Therefore, the aim of this multicentre study was to carry out a retrospective multicentre analysis to investigate the correlation between blastocyst collapse and pregnancy outcome. Here, 1297 intracytoplasmic sperm injection (ICSI)/in vitro fertilization (IVF) fresh cycles, with an elective single blastocyst transfer (eSET) were included in this study. Embryos were cultured individually in 6.0% CO2, 5.0% O2, 89.0% N2, using single step medium (GTLTM VitroLife, Sweden) or sequential medium (CookTM, Cook Medical, Australia) and selected for transfer using standard morphological criteria. With the use of time-lapse monitoring (TLM), blastocysts were analyzed by measuring the maximum volume reduction and defined as having collapsed, if there was ≥ 50% volume reduction from the expanded blastocyst and the collapse event. Following embryo replacement, each blastocyst was retrospectively allocated to one of two groups (collapsed or not collapsed). Here, 259 blastocysts collapsed once or more during development (19.9%) and the remaining 1038 either contracted minimally or not collapsed (80.1%). A significantly higher ongoing pregnancy rate (OPR) of 51.9% (95% CI 48.9-59.9%) was observed when blastocysts that had not collapsed were replaced compared with cycles in which collapsed blastocysts were transferred 37.5% (95% CI 31.6-43.4%). This study suggests that human blastocysts that collapse spontaneously during development are less likely to implant and generate a pregnancy compared with embryos that do not. Although this is a retrospective study, the results demonstrated the utility of collapse episodes as new marker of embryo selection following eSET at blastocyst stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call