Abstract

Long-span suspension bridges are typically designed against wind and earthquake loadings without considering blast loads because existing blast-resistant design guidelines for bridges are limited and in fact not detailed enough to fully explicate the consequences of a blast event. This study performed detailed dynamic analysis of a long-span suspension bridge to parametrically evaluate its structural redundancy under small to large blasts detonated at different locations. To accomplish this, the blast-structure interaction problem was solved by a simplified approach whereby the blast aspect was modeled as nodal loads by simulating the pressure contour area on the deck surface caused by the explosion; the structural aspect was modeled as a three-dimensional fishbone skeleton finite-element model. In particular, major attention was paid to the blast load effects on the main cable and hangers designed at safety factors of 2.2 and 2.5, respectively. This study concluded that the main cable and hangers show sufficient and insufficient structural redundancies, respectively under small to medium blasts, whereas a large blast was proven to be detrimental to both the main cable and hangers, which may further trigger progressive collapse of the entire suspension bridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.