Abstract

The effects of cosmic-ray pressure on the dynamics of self-similar, spherical blast waves and driven waves are investigated on the assumptions that the ratio of relativistic cosmic-ray pressure to total pressure at the shock front is a constant w and the the cosmic rays and thermal gas evolve as independent adiabatic fluids in the postshock flow. For blast waves from a point explosion in a uniform medium, the cosmic rays dominate the pressure near r = 0 if w>0. The solutions show that, if w is small, the ratio of cosmic-ray energy to total energy in the blast wave is several times w. The solutions are used to make specific predictions of the pion-decay ..gamma..-ray flux from a blast wave as a function of w. If w is large, the predicted fluxes from supernova remnants are close to the current observational limits. It is also noted that cosmic rays may limit the compression in the radiative shock waves of supernova remnants. The addition of cosmic pressure does not change the geneal nature of the driven wave self-similar solutions. The solutions are used to predict the pion-decay ..gamma..-ray flux from a young Type II supernova interacting with circumstellar material. Observations thesemore » ..gamma..-rays from extragalactic supernovae are not promising, but a galactic supernova could be very bright in ..gamma..-rays.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.