Abstract

We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-μm-selected galaxies, we remeasure the 70–870-μm flux densities at the positions of their most likely 24-μm counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q250(= log10[S250 μm/S1400 MHz]), and the bolometric equivalent, qIR. At z≈ 0.6, where our 250-μm filter probes rest-frame 160-μm emission, we find no evolution relative to q160 for local galaxies. We also stack the FIR and submm images at the positions of 24-μm- and radio-selected galaxies. The difference between qIR seen for 250-μm- and radio-selected galaxies suggests that star formation provides most of the IR luminosity in ≲100-μJy radio galaxies, but rather less for those in the mJy regime. For the 24-μm sample, the radio spectral index is constant across 0 < z < 3, but qIR exhibits tentative evidence of a steady decline such that qIR∝ (1 +z)−0.15±0.03– significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.