Abstract

Abstract One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening (R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element (FE) analysis was performed using a new model based on the 3D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call