Abstract

This paper deterministically evaluates the blast performance of steel moment-resisting frame (MRF) smart structures equipped with nickel titanium shape-memory alloy (NiTi SMA) bolted connections. The recentering capacity of the NiTi SMA bolts is exploited to limit the structural damage and reduce the residual drift after a near-field explosion event. A simplified blast over-pressure calculation approach is used to draw the blast overpressure profile. Numerically, the NiTi SMA–based connection is designed conforming to current European standards and is modeled with a solid finite element. The effect of high-strain-rate actions is considered. The response of the NiTi SMA–based connection is obtained by the nonlinear transient analysis and compared with the steel bolted connection. The NiTi SMA–based connection provided excellent recentering capacity. Later, the moment-rotation response of the NiTi SMA–based connection is utilized in the MRF structure. A simplified self-centering connection is proposed to produce smart behavior in the MRF structures. The results reveal that using NiTi SMA connections keep interstory drift relatively low and substantially provide reasonable structural lateral resistance under near-field blast loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.