Abstract

In recent years, the construction industry has struggled with a variety of issues such as material availability, supply channel management, and the increasing cost of construction materials. These issues have encouraged the search for replacements and substitutes for existing construction materials. Blast Furnace Slag is used in the construction industry as a mineral amendment or aggregate. Their use in Earth Construction, due to their post-industrial origin, may be associated with increased levels of potentially toxic elements (PTE) in the soil. This study aimed to evaluate the effectiveness of the immobilization potential of Blast Furnace Slag and to compare it with the addition of Blast Furnace Slag with Activated Carbon using different concentrations of these amendments. We were able to determine the concentrations of selected PTE (zinc, copper, nickel, cadmium and lead) in the soil, roots and aerial parts of Lolium perenne L., using different concentrations of Blast Furnace Slag (3%, 5% and 10%), and Blast Furnace Slag with Activated Carbon (3% and 5%) as soil amendments. Measurements were carried out with Flame Atomic Absorption Spectrometry (FAAS). Both the addition of Blast Furnace Slag and Activated Carbon with Slag increased plant biomass. The addition of slag effectively reduced the zinc, copper, cadmium and lead content of the soil, while the addition of Activated Carbon slag significantly increased the content of selected PETs in the roots and aerial parts of plants. It was considered reasonable to use Blast Furnace Slag with the addition of Activated Carbon in supporting the processes of the assisted phytostabilization of PTE polluted soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call