Abstract

Nonlinear numerical simulations are reported for a conventional unitized laminated glass curtain wall subjected to high- and low-level air blast loading. The studied curtain wall, spanning floor to floor, consisted of a laminated glass panel, a continuous bead of structural silicone sealant, a split screw spline frame and four rigid brackets. Firstly, a linear elastic FE-model (M01) is presented to investigate dynamic stresses and deflections due to explosion, by taking into account geometrical nonlinearities. Since, in similar glazing systems, it is important to take into account the possible cracking of glass lites, a second model (M02), calibrated to previous experimental data, is proposed. In it, glass behaves as a brittle-elastic material, whereas an elastoplastic characteristic curve is assumed for mullions. As a result, the design explosion seriously affects the main components of the curtain wall, especially the bead of silicone. To address these criticalities, additional viscoelastic (VE) devices are installed at the frame corners (M03). Their effectiveness explains the additional deformability provided to the conventional curtain wall, as well as the obvious dissipation of the incoming energy due to blast loading. Structural and energy capabilities provided by devices are highlighted by means of numerical simulations.

Highlights

  • Protection of constructed facilities from damaging natural hazards has recently become an increasingly important issue

  • Since the aim of this paper is to provide a first assessment of the possible structural effects of VE devices introduced in conventional curtain walls, in a first approximation, it could be reasonable to neglect the impulsive nature of design load

  • The paper numerically investigated the behavior of a conventional curtain wall subjected to high-level air blast loading

Read more

Summary

Introduction

Protection of constructed facilities from damaging natural hazards has recently become an increasingly important issue. Energy dissipation devices are added to a structure so that a large portion of the input energy can be dissipated through these devices, thereby reducing energy dissipation demand on the original structure. Such devices include metallic yield dampers, friction dampers, viscous or viscoelastic dampers, and tuned mass dampers. Viscoelastic (VE) dampers, originally used to control vibrations in aircraft, aerospace and machine structures, have been successfully applied in civil engineering to reduce vibrations of buildings or bridges caused by wind loads or earthquakes [1].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.