Abstract

The increased interest of terrorist groups in toxic chemicals and chemical warfare agents presents a continuing threat to our societies. Early warning and detection is a key component for effective countermeasures against such deadly agents. Presently available and near term solutions have a number of major drawbacks, e.g. lack of automated, remote warning and detection of primarily low volatile chemical warfare agents. An alternative approach is the use of animals as sentinels for exposure to toxic chemicals. To overcome disadvantages of vertebrates the present pilot study was initiated to investigate the suitability of South American cockroaches (Blaptica dubia) as warning system for exposure to chemical warfare nerve and blister agents. Initial in vitro experiments with nerve agents showed an increasing inhibitory potency in the order tabun – cyclosarin – sarin – soman – VX of cockroach cholinesterase. Exposure of cockroaches to chemical warfare agents resulted in clearly visible and reproducible reactions, the onset being dependent on the agent and dose. With nerve agents the onset was related to the volatility of the agents. The blister agent lewisite induced signs largely comparable to those of nerve agents while sulfur mustard exposed animals exhibited a different sequence of events. In conclusion, this first pilot study indicates that Blaptica dubia could serve as a warning system to exposure of chemical warfare agents. A cockroach-based system will not detect or identify a particular chemical warfare agent but could trigger further actions, e.g. specific detection and increased protective status. By designing appropriate boxes with (IR) motion sensors and remote control (IR) camera automated off-site warning systems could be realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.