Abstract

The blanket design for a force-free helical reactor (FFHR) is presented, which is a demo-relevant heliotron-type D-T fusion reactor based on the first all-superconducting-coils device, LHD (large helical device) under construction in NIFS at present. For the goal of a self-ignited reactor of 3 GW thermal output, the design parameters at the first stage for concept definition of FFHR have been investigated. The main feature of FFHR is a force-free-like configuration of helical coils, which makes it possible to simplify the coil supporting structure and to use a high magnetic field instead of high plasma beta. The other feature is the selection of molten-salt FLiBe as a self-cooling tritium breeder for mainly safety reasons owing to the low tritium inventory, low reactivity with air and water, low pressure operation, and low MHD resistance compatible with a high magnetic field. In particular, as common issues in fusion reactors, the FLiBe blanket system in FFHR is expressed in detail by showing engineering possibilities to overcome key issues on tritium permeation, material corrosion, heat transfer, operation pressure, etc. The basic design for maintenance and repair of the blanket is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.