Abstract
Ducted wind turbine with multiple blades installed was believed to have a good wind power energy conversion effect. However, little information was available on how to design a good ducted wind turbine. In this paper the effects of blade number on a ducted wind turbine performance is studied. Numerical studies using CFD method to simulate the wind turbine performance were adopted. The duct is a converging-diverging nozzle with the turbine blades located at the throat. A rated output of a 1-kW turbine is adopted as the baseline design. It was found that the blade geometry, stagger angle, and number of blades have different duct blockage effects, and do affect the turbine performance (specifically the power coefficient and torque coefficient, etc.). The fewer number of blades has higher through flow speed, while the larger number of blades provides larger torque. The best power coefficient lies in between the two extremes. The appropriate number of blades is important to match the generator performance curve for optimal overall performance and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.