Abstract

A model for the propulsion system of a small-scale electric unmanned aerial system is presented. This model is based on a blade element momentum (BEM) model of the propeller, with corrections for tip losses, Mach effects, three-dimensional flow components, and Reynolds scaling. Particular focus is placed on the estimation of scale effects not commonly encountered in the full-scale application of the BEM modeling method. Performance predictions are presented for geometries representative of several commercially available propellers. These predictions are then compared with experimental wind tunnel measurements of the propellers’ performance. The experimental data support the predictions of the proposed BEM model and point to the importance of scale effects on prediction of the overall system performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.