Abstract

The objective is to investigate whether human amniotic fluid stem cells (hAFSCs) grafting into the bladder may influence bladder functional and molecular changes in an animal stroke model. Female rats were divided into three groups: sham, middle cerebral artery occlusion (MCAO) alone, and MCAO plus 1 × 106 hAFSCs transplanting into bladder wall. Bladder function was analyzed by cystometry at days 3 and 10 after MCAO. The expressions of bladder nerve growth factor (NGF), M2‐muscarinic, M3‐muscarinic, and P2X1 receptors were measured by immunohistochemistry and real‐time polymerase chain reaction. When compared with sham‐operated group, MCAO alone rats had significant increase in residual volume and decrease in voided volume and intercontraction interval; however, these bladder dysfunctions were improved following hAFSCs transplantation. The immunoreactivities of NGF, M3, and P2X1 significantly decreased at days 3 and 10, but M2 increased at day 3 after MCAO. Following hAFSCs transplantation, the immunoreactivities of NGF and P2X1 significantly increased at day 3, and M2 increased at day 10 after MCAO. The mRNAs of NGF, M2, and M3 significantly increased at day 3, but NGF and M2 decreased at day 10 after MCAO. Following hAFSCs transplantation, there was significant decrease in M2 mRNA at day 3 and increase in P2X1 mRNA at days 3 and 10 after MCAO. Bladder dysfunction caused by MCAO can be improved by hAFSCs transplanting into bladder which may be related to the expressions of bladder NGF, and muscarinic and P2X1 receptors. Stem Cells Translational Medicine 2017;6:1227–1236

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.