Abstract

• To determine if hyaluronic acid (HA) can be incorporated into porcine small intestinal submucosa (SIS) through poly (lactide-co-glycolide-acid) (PLGA) nanoparticles to improve the consistency of the naturally derived biomaterial and promote bladder tissue regeneration. • Beagle dogs were subjected to 40% partial cystectomy followed by bladder augmentation with commercial SIS or HA-PLGA-modified SIS. • Urodynamic testing was performed before and after augmentation to assess bladder volume. • A scoring system was created to evaluate gross and histological presentations of regenerative bladders. • All dogs showed full-thickness bladder regeneration. • Histological assessment showed improved smooth muscle regeneration in the HA-PLGA-modified SIS group. • For both groups of dogs, urodynamics and graft measurements showed an approximate 40% reduction in bladder capacity and graft size from pre-augmentation to post-regeneration measurements. • Application of the scoring system and statistical analysis failed to show a significant difference between the groups. • SIS can be modified through the addition of HA-PLGA nanoparticles. The modified grafts showed evidence of improved smooth muscle regeneration on histological assessment, although this difference was not evident on a novel grading scale. • The volume loss and graft shrinkage experienced are consistent with previous models of SIS bladder regeneration at the 10-week time point. • Additional research into the delivery of HA and the long-term benefits of HA on bladder regeneration is needed to determine the full benefit of HA-PLGA-modified SIS. In addition, a more objective biochemical characterization will be needed to evaluate the quality of regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.