Abstract

To investigate pudendal-to-bladder spinal reflexes in chronic spinal cord injured (SCI) cats induced by electrical stimulation of the pudendal nerve. Bladder inhibition or voiding induced by pudendal nerve stimulation at different frequencies (3 or 20 Hz) was studied in three female, chronic SCI cats under alpha-chloralose anesthesia. Voiding induced by a slow infusion (2-4 ml/min) of saline into the bladder was very inefficient (voiding efficiency=7.3%+/-0.9%). Pudendal nerve stimulation at 3 Hz applied during the slow infusion inhibited reflex bladder activity, and significantly increased bladder capacity to 147.2+/-6.1% of its control capacity. When the 3-Hz stimulation was terminated, voiding rapidly occurred and the voiding efficiency was increased to 25.4+/-6.1%, but residual bladder volume was not reduced. Pudendal nerve stimulation at 20 Hz induced large bladder contractions, but failed to induce voiding during the stimulation due to the direct activation of the motor pathway to the external urethral sphincter. However, intermittent pudendal nerve stimulation at 20 Hz induced post-stimulus voiding with 78.3+/-12.1% voiding efficiency. The voiding pressures (39.3+/-6.2 cmH2O) induced by the intermittent pudendal nerve stimulation were higher than the voiding pressures (23.1+/-1.7 cmH2O) induced by bladder distension. The flow rate during post-stimulus voiding induced by the intermittent pudendal nerve stimulation was significantly higher (0.93+/-0.04 ml/sec) than during voiding induced by bladder distension (0.23+/-0.07 ml/sec). This study indicates that a neural prosthetic device based on pudendal nerve stimulation might be developed to restore micturition function for people with SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.