Abstract
Basic fibroblast growth factor (bFGF) plays an important role in wound repair and tissue regeneration. Considerable research has been focused on the exploration of bFGF delivery systems for maintaining efficient local concentration at the injury sites. In this study, bFGF was chemically crosslinked to the bladder acellular matrix (BAM) to create specific binding between bFGF and BAM. The BAM scaffold conjugated with bFGF (CL-BAM/bFGF) could bind more bFGF and achieve controlled release of bFGF, which promoted human fibroblasts to proliferate in vitro and accelerated cellularization and vascularization after subcutaneous implantation. Using the rat bladder reconstruction model, the CL-BAM/bFGF group showed better tissue regeneration compared with the other groups. In summary, CL-BAM/bFGF could prevent the diffusion of bFGF from BAM and maintain its activity. Thus, the scaffold conjugated with growth factor systems could be an effective way for maintaining local therapy dosage at the target site in wound repair and tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.