Abstract

The objective of this study was to evaluate the ability of bladder acellular matrix (BAM) to support the individual and combined growth of primary porcine bladder smooth muscle (SMC) and urothelial (UEC) cells. An in vitro co-culture system was devised to evaluate the effect of UEC on (i) SMC-mediated contraction of BAM discs, and (ii) SMC invasiveness into BAM. Cells were seeded onto BAM discs under 4 different culture conditions. Constructs were incubated for 1, 7, 14 and 28 days. Samples were then harvested for evaluation of matrix contraction. Immunohistochemistry (IHC) was utilized to examine cellular organization within the samples and conditioned media supernatants analyzed for net gelatinase activity. BAM contraction was significantly increased with co-culture. The same side co-culture configuration lead to a greater reduction in surface area than opposite side co-culture. IHC revealed enhanced SMC infiltration into BAM when co-culture was utilized. A significant increase in net gelatinase activity was also observed with the co-culture configuration. Enhanced infiltration and contractile ability of bladder SMCs with UEC co-culture may, in part, be due to an increase in gelatinase activity. The influence of bladder UECs on SMC behaviour in vitro indicates that BAM may contain some key inductive factors that serve to promote important bladder cell–cell and cell–matrix interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call