Abstract

After an introduction into sensitive criteria in Markov decision processes and a discussion of definitions, we prove the existence of stationary Blackwell optimal policies under following main assumptions: (i) the state space is a Borel one; (ii) the action space is countable, the action sets are finite; (iii) the transition function is given by a transition density; (iv) a simultaneous Doeblin-type recurrence condition holds. The proof is based on an aggregation of randomized stationary policies into measures. Topology in the space of those measures is at the same time a weak and a strong one, and this fact yields compactness of the space and continuity of Laurent coefficients of the expected discounted reward. Another important tool is a lexicographical policy improvement. The exposition is mostly self-contained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.