Abstract

The background blackbody radiation causes the shift of the hyperfine energy level and affects the accuracy of the optical frequency standard. The polarizabilities of the hyperfine energy levels 5d106s2S1/2 (F=0) and 5d96s2 2D5/2 (F=2) of 199Hg+ are evaluated and the relative frequency shift at room temperature due to blackboby radiation is calculated to be -5.410-17. Finally the effect of blackbody radiation on single 199Hg+ optical frequency standard is discussed at an ultralow temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.