Abstract

The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.