Abstract

Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC – DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1–0.6 μg/cm2 in the tattooed skin and 0.1–11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

Highlights

  • Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (b[a]p) belong to a large class of well-studied chemical pollutants with ubiquitous occurrence in the environment

  • For some time it is well known that human exposure to complex mixtures of PAH occurs primarily through three routes: (i) the respiratory tract through the smoking of tobacco products and the inhalation of polluted air, (ii) the gastrointestinal tract through the ingestion of contaminated drinking water and food, and (iii) skin contact, which usually occurs from occupational exposure [1].OnePAH isclassified by the International Agency of Research in Cancer as human carcinogens (b[a]p) and several others as probably or possibly carcinogenic to humans [2].B[a]p, benz[a]anthracene, benzo[b]fluoranthene,benzo[ghi]perylene, benzo[j]fluoranthene, benzo[k]fluoranthene, chrysene, cyclopenta[cd]pyrene, dibenz[a,h]anthracene,dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene,dibenzo[a,l]pyrene, indeno[1,2,3-cd]pyrene and 5-methylchrysenehave shown clear genotoxicity in standard assays in vitro andin vivo [3]

  • PAH recovery from human tissue – recovery experiments The goal of the recovery experiments was the establishment of an optimal procedure to extract a selection of 20 important PAH and phenol from human tissue

Read more

Summary

Introduction

Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (b[a]p) belong to a large class of well-studied chemical pollutants with ubiquitous occurrence in the environment They consist of two or more fused benzene rings and are generated naturally or notably found as a result of incomplete combustion of organic materials, fossil fuels, vehicular emission or even tobacco smoke. Animal studies and epidemiological studies have associated PAH exposure with multiple adverse health effects invarious organs (e.g. cancer of lung, skin, and bladder, neural tube defects [4,5,6,7,8,9,10]) This has been frequently linked to mutagenic properties of PAH metabolites. Due to the production process of black tattoo inks, it is not surprising that both, DEP and black tattoo inks contain comparable PAH species

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call