Abstract
Westerly and north-westerly storms regularly hit the German North Sea coast causing surges of several meters at the dikes. But extreme events like cyclone Xaver in 2013 are not the largest physically possible events on record. Dangendorf et al. (2016) show that the individual components of the total water level (i.e. mean sea level, surge, and tide) were not at their observed maximum during Xaver. The research project “EXTREMENESS†was initiated to examine the meteorological potential of storms in the German Bight and to assess the consequences of extremely large and rare but physically possible storm surge events, so called “black swansâ€. Our project partners, the German Meteorological Office, the German Federal Waterways Engineering and Research Institute, and Helmholtz-Zentrum Geesthacht, evaluate possible meteorological and resulting hydraulic boundary conditions including regionally projected sea level rise scenarios which we use to simulate inundations in the study area around Emden (Lower Saxony, Germany) using a two-dimensional hydrodynamic numerical (2D-HN) model. Large parts of the region are situated below mean sea level and drained using tide gates and pumping stations. Therefore the area is highly vulnerable to dike failures and loads exceeding the design levels of defense structures. Combining inundation scenarios with exceeding probabilities and dike failure probabilities will yield risk maps, showing the most vulnerable dike sections and pointing out areas that need particular attention in maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.