Abstract

Black rice is rich in anthocyanins, and the antioxidant effect of anthocyanins is recognized by consumers. The aim of this study was to identify the molecular mechanisms underlying the antioxidant activity of black rice anthocyanin extract (BRAE) in PC12 cells and C. elegans. Results showed that BRAE increased antioxidant enzyme activities and decreased the accumulation of reactive oxygen species (ROS) and malondialdehyde in PC12 cells induced by H2O2. Meanwhile, BRAE extended the lifespan, enhanced resistance to stress, increased antioxidant enzyme activities, and reduced lipofuscin, ROS, and MDA accumulation in wild-type C. elegans. The polyQ40 aggregation in AM141, paralysis in CL4176, and chemotaxis deficit in CL2355 were alleviated by BRAE administration. BRAE downregulated the mRNA expression of age-1 and daf-2, while upregulated the daf-16 mRNA level and SOD-3, CTL-1, and GST-4 protein expression. Mutational lifespan tests and molecular docking showed that insulin pathway might be involved in the mechanism of lifespan extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call