Abstract

The presence of black powder in natural gas pipelines can lead to equipment erosion, valve failure, instrumentation malfunction, and increased pressure drop. However, despite its impact on downstream and midstream operations, black powder production is poorly understood. In the present work, black powder formation as a result of corrosion was investigated by simulating sales gas conditions in a glass cell. Steel specimens were systematically exposed to a range of CO2, H2S, and O2 partial pressures at differing water condensation rates. The potential for hygroscopic material assisting black powder formation was also investigated. Friable corrosion products found in dewing conditions consisted of siderite (FeCO3), mackinawite (FeS), and hematite (Fe2O3). The expected mass of corrosion products, as determined from experimental corrosion rates, are in line with the high levels of black powder that can be experienced. The presence of hygroscopic NaCl crystals facilitated corrosion at relative humidities as low as 33%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.