Abstract

Crystallinity and trap‐state density of a perovskite film play a critical role in the performance of corresponding perovskite solar cells (PVSCs). Herein, liquid‐phase‐exfoliated black phosphorus quantum dots (BPQDs) are incorporated into the perovskite precursor solution as additives to direct the formation of the perovskite film, i.e., methylammonium lead iodide (MAPbI3). It is found that the perovskite films made with BPQDs have higher crystallinity and less nonradiative detects compared with the pristine ones, leading to longer carrier lifetime and higher carrier collection efficiency. Time‐of‐flight secondary‐ion mass spectra and surface density calculation of BPQDs reveal that the improvement of the perovskite film quality may be related to the heterogeneous nucleation of the perovskite film at the BPQDs. PVSCs using MAPbI3 films made with BPQDs achieve a maximum power conversion efficiency of 20.0% and an encouraging thermal stability of T80 = 100 h at 100 °C. Both values are remarkably higher than the devices with pristine perovskite films. Therefore, this work demonstrates the potential of the 2D materials quantum dots‐assisted growth method for high‐performance PVSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.