Abstract

The platform of the combination chemo-photodynamic therapy has received widespread attention for enhancing anticancer efficacy and inhibiting tumor growth, which supports thermosensitive and controlled drug release. Here, an injectable thermoreversible hydrogel (BPNSs/DTX-M-hydrogel) co-encapsulating black phosphorus nanosheets (BPNSs) and docetaxel (DTX) micelles was prepared to increase drug accumulation in tumor tissue and improve anticancer efficacy. BPNSs were prepared by liquid exfoliation method with a simple and rapid preparation, and DTX micelles were prepared by the thin film dispersion method. Hydrogel was prepared with F127 as hydrogel matrix for intratumoral injection. BPNSs, DTX micelles, and BPNSs/DTX-M-hydrogel were characterized by particle size, morphology, stability and degradation, phase transition feature, and photodynamic performance. And the in vivo anticancer efficacy was evaluated in 4T1 tumor-bearing Balb/c mice. The results showed that the particle size of DTX micelles and BPNSs were about 16 and 180nm, respectively. The hydrogel with the transformation temperature at near body exhibited great photodynamic efficacy and good biodegradability. Moreover, BPNSs/DTX-M-hydrogel with the combination of chemotherapy and photodynamic therapy exhibited unique anticancer efficacy with low toxicity. In conclusion, the combination platform of chemo-photodynamic therapy based on BPNSs could be a prospective strategy in antitumor research. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.