Abstract

AbstractElectrochemical water splitting presents a potential method for generating clean and renewable hydrogen energy. The extensive utilization of such energy depends on the availability of abundant and easily accessible sources of water. However, despite the significant development prospects, direct seawater decomposition is hindered by the presence of impurities, intricate pretreatment, and reaction process, etc, which hinders the efficient implementation of seawater electrolysis as a means of hydrogen production. Herein, a strategy is described to modulate the Ru surface electronic structure through rapid formation of Ru─P bonds between Ru and black phosphorus (BP), thereby optimizing the electrochemical activity in the hydrogen evolution reaction (HER). By adjusting the amount of BP, the HER price activity of BPed‐Ru‐Gr exhibits a remarkable increase of 3.8‐fold and 10.4‐fold compared with the original Ru‐Gr and the benchmark of commercial Pt/C in 1.0 m KOH. Furthermore, BPed‐Ru‐Gr also demonstrates high HER stability and activity in alkaline seawater. The price activity of BPed‐Ru‐Gr exceeds that of the state‐of‐the art Pt/C by a factor of 13.0 after 1000 cycles. The research reveales the marine corrosion resistance of BP on Ru and Pt metal catalysts in the HER, demonstrating its ability to resist the corrosion of Cl ions in alkaline seawater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.