Abstract

A flexible all-solid-state supercapacitor with fast charging speed and high power density is a promising high-performance energy storage and sensor device in photovoltaic systems. Two-dimensional black phosphorus (BP) is a prospective electrode nanomaterial, but it struggles to fully exert its properties limited by its self-stacking. Herein, by embedding carbon nanoparticles into the interlayer of BP microplates, the designed BP/carbon nanoframe (BP/C NF) forms a certain nano-gap on the substrate for promoting the orderly transport of charges. The corresponding supercapacitor BP/C SC has a capacity of 372 F g−1, which is higher than that constructed from BP microplates (32.6 F g−1). Moreover, the BP/C SC exhibits good stability with a ca. 90% of capacitance retentions after 10,000 repeated bending and long-term cycles. Thus, the proposed strategy of using BP/carbon nanoframes is feasible to develop exceptional flexible energy devices, and it can guide the design of relevant two-dimensional nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call