Abstract

In this work, we consider an extension of the symmetric teleparallel equivalent of General Relativity (STEGR), namely, f(Q)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f({\\mathbb {Q}})$$\\end{document} gravity, by including a boundary term BQ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {B}}_Q$$\\end{document}, where Q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {Q}}$$\\end{document} is the non-metricity scalar. More specifically, we explore static and spherically symmetric black hole and regular black hole solutions in f(Q,BQ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f({\\mathbb {Q}},{\\mathbb {B}}_Q)$$\\end{document} gravity coupled to nonlinear electrodynamics (NLED). In particular, to obtain black hole solutions, and in order to ensure that our solutions preserve Lorentz symmetry, we assume the following relation fQ=-fB\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_Q = -f_B$$\\end{document}, where fQ=∂f/∂Q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_{Q}=\\partial f/\\partial {\\mathbb {Q}}$$\\end{document} and fB=∂f/∂BQ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_{B}= \\partial f/\\partial {\\mathbb {B}}_Q$$\\end{document}. We develop three models of black holes, and as the starting point for each case we consider the non-metricity scalar or the boundary term in such a way to obtain the metric functions A(r). Additionally, we are able to express matter through analytical solutions for specific NLED Lagrangians LNLED(F)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {L}}}_{\ extrm{NLED}}(F)$$\\end{document}. Furthermore, we also obtain generalized solutions of the Bardeen and Culetu types of regular black holes, by imposing specific metric functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call