Abstract

Quantum gravitational corrections to black holes are studied in four and higher dimensions using a renormalisation group improvement of the metric. The quantum effects are worked out in detail for asymptotically safe gravity, where the short-distance physics is characterized by a nontrivial fixed point of the gravitational coupling. We find that a weakening of gravity implies a decrease of the event horizon, and the existence of a Planck-size black hole remnant with vanishing temperature and vanishing heat capacity. The absence of curvature singularities is generic and discussed together with the conformal structure and the Penrose diagram of asymptotically safe black holes. The production cross-section of mini-black holes in energetic particle collisions, such as those at the Large Hadron Collider, is analysed within low-scale quantum gravity models. Quantum gravity corrections imply that cross-sections display a threshold, are suppressed in the Planckian, and reproduce the semiclassical result in the deep trans-Planckian region. Further implications are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.