Abstract

Recently, Ho$\breve{r}$ava proposed a non-relativistic renormalizable theory of gravity which is essentially a field theoretic model for a UV complete theory of gravity and reduces to Einstein gravity with a non-vanishing cosmological constant in IR. Also the theory admits a Lifshitz scale-invariance in time and space with broken Lorentz symmetry at short scale. On the other hand, at large distances higher derivative terms do not contribute and the theory coincides with general relativity. Subsequently, Cai and his collaborators and then Catiuo et al have obtained black hole solutions in this gravity theory and studied the thermodynamic properties of the black hole solution. In the present paper, we have investigated the black hole thermodynamic for two choices of the entropy function - a classical and a topological in nature. Finally, it is examined whether a phase transition is possible or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.