Abstract

Black hole superradiance provides a window into the dynamics of light scalar fields and their interactions close to a rotating black hole. Due to the rotation of the black hole, the amplitude of the scalar field becomes magnified, leading to a "black hole bomb" effect. Recent work has demonstrated that rotating black holes in dynamical Chern-Simons gravity possess unique structures, the "Chern-Simons caps," which may influence the behavior of matter near the black hole. Motivated by the presence of these caps, we study superradiance in dynamical Chern-Simons gravity in the context of a slowly rotating black hole. We find that additional modes are excited and contribute to the superradiance beyond what is expected for a Kerr black hole. Studying the superradiant spectrum of perturbations, we find that the Chern-Simons contributions give rise to small corrections to the angular dependence of the resulting scalar cloud. Finally, we comment on potential observable consequences and future avenues for investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call