Abstract

ABSTRACT New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8–10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense–Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call