Abstract

Colliding black holes are systems of profound interest in both gravitational-wave astronomy and in gravitation theory, and a variety of methods have been developed for modeling their dynamics in detail. The features of these dynamics are determined by the masses of the holes and by the magnitudes and axes of their spins. While masses and spin magnitudes can be defined in reasonably unambiguous ways, the spin axis is a concept that, despite great physical importance, is seriously undermined by the coordinate freedom of general relativity. Despite a great wealth of detailed numerical simulations of generic spinning black hole collisions, very little attention has gone into defining or justifying the definitions of the spin axis used in the numerical relativity literature. In this paper, we summarize and contrast the various spin direction measures available in the spec code, including a comparison with a method common in other codes, we explain why these measures have shown qualitatively different nutation features than one would expect from post-Newtonian theory, and we derive and implement new measures that give much better agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.