Abstract

We consider the motion of nonspinning, compact objects orbiting around a Kerr black hole with tidal couplings. The tide-induced quadrupole moment modifies both the orbital energy and outgoing fluxes, so that over the inspiral timescale there is an accumulative shift in the orbital and gravitational wave phase. Previous studies on compact object tidal effects have been carried out in the Post-Newtonian (PN) and Effective-One-Body (EOB) formalisms. In this work, within the black hole perturbation framework, we propose to characterize the tidal influence in the expansion of mass ratios, while higher-order PN corrections are naturally included. For the equatorial and circular orbit, we derive the leading order, frequency dependent tidal phase shift which agrees with the Post-Newtonian result at low frequencies but deviates at high frequencies. We also find that such phase shift has weak dependence ($\le 10\%$) on the spin of the primary black hole. Combining this black hole perturbation waveform with the Post-Newtonian waveform, we propose a frequency-domain, hybrid waveform that shows comparable accuracy as the EOB waveform in characterizing the tidal effects, as calibrated by numerical relativity simulations. Further improvement is expected as the next-leading order in mass ratio and the higher-PN tidal corrections are included. This hybrid approach is also applicable for generating binary black hole waveforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.