Abstract

We study the scaling between bulge magnitude and central black hole (BH) mass in galaxies with virial BH masses < 10^6 solar mass. Based on careful image decomposition of a snapshot Hubble Space Telescope I-band survey, we found that these BHs are found predominantly in galaxies with pseudobulges. Here we show that the \mbulge\ relation for the pseudobulges at low mass is significantly different from classical bulges with BH masses >10^7 solar mass. Specfically, bulges span a much wider range of bulge luminosity, and on average the luminosity is larger, at fixed black hole mass. The trend holds both for the active galaxies from Bentz et al. and the inactive sample of Gultekin et al. and cannot be explained by differences in stellar populations, as it persists when we use dynamical bulge masses. Put another way, the ratio between bulge and BH mass is much larger than $\sim 1000$ for our sample. This is consistent with recent suggestions that black hole mass does not scale with the pseudobulge luminosity. The low-mass scaling relations appear to flatten, consistent with predictions from Volonteri & Natarajan for massive seed BHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.