Abstract

Black hole jet power depends on the angular velocity of magnetic field lines, $\Omega_F$. Force-free black hole magnetospheres typically have $\Omega_F/\Omega_H \approx 0.5$, where $\Omega_H$ is the angular velocity of the horizon. We give a streamlined proof of this result using an extension of the classical black hole membrane paradigm. The proof is based on an impedance-matching argument between membranes at the horizon and infinity. Then we consider a general relativistic magnetohydrodynamic simulation of an accreting, spinning black hole and jet. We find that the theory correctly describes the simulation in the jet region. However, the field lines threading the horizon near the equator have much smaller $\Omega_F/\Omega_H$ because the force-free approximation breaks down in the accretion flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.